
JNI Examples for Android

Jurij Smakov
jurij@wooyd.org

April 25, 2009

Contents

1 Licence 1

2 Introduction 1

3 Java interface 2

4 Native library implementation 4
4.1 Headers and global variables . 5
4.2 Calling Java functions from Java and native threads 6
4.3 Implementation of other native functions 9
4.4 The JNI OnLoad() function implementation 11

5 Building the native library 14

6 Using native functions in Java code 14

7 Unresolved issues and bugs 18

1

April 25, 2009 JNIExample.nw 1

1 Licence

This document and the code generated from it are subject to the following
licence:

Copyright (C) 2009 Jurij Smakov <jurij@wooyd.org>

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

2 Introduction

While JNI is a pretty exciting way to greatly extend Android functionality and
port existing software to it, to date there is not a lot of detailed documentation
on how to create the native libraries and interface with them from the Android’s
Java Virtual Machine (JVM). This document aims at filling this gap, by pro-
viding a comprehensive example of creating a native JNI library, and using it
from Java.

This document has been generated from source using noweb, a literate pro-
gramming tool. The JNIExample.nw is the source in noweb format. It can
be used to generate the document output in a variety of formats (for example,
PDF), as well as generate the JNI example source code.

The complete Android project, including the source code generated from
JNIExample.nw is available for download. So, if you are impatient, just grab
it and check out the ”Building the native library” section 5, which describes
prerequisites for the build and the build procedure itself.

This document is not a replacement for other general JNI documentation.
If you are not familiar with JNI, you may want to have a look at the following
resources:

• Sun’s Java Native Interface guide

• Java Native Interface: Programmer’s Guide and Specification

Also, there are a couple of blog entries, which contain some bits of useful infor-
mation:

http://www.opensource.org/licenses/mit-license.php
http://www.cs.tufts.edu/~nr/noweb/
http://android.wooyd.org/JNIExample/files/JNIExample.nw
http://android.wooyd.org/JNIExample/files/JNIExample.pdf
http://android.wooyd.org/JNIExample/files/JNIExample
http://android.wooyd.org/JNIExample/files/JNIExample.tar.gz
http://java.sun.com/j2se/1.4.2/docs/guide/jni/
http://java.sun.com/docs/books/jni/

April 25, 2009 JNIExample.nw 2

• JNI in Android

• How to add a new module to Android

If you notice any errors or omissions (there are a couple of known bugs and
unresolved issues 7), or have a suggestion on how to improve this document,
feel free to contact me using the email address mentioned above.

3 Java interface

We start by defining a Java class JNIExampleInterface, which will provide the
interface to calling the native functions, defined in a native (C++) library. The
native functions corresponding to Java functions will need to have matching call
signatures (i.e. the count and types of the arguments, as well as return type).
The easiest way to get the correct function signatures in the native library is to
first write down their Java prototypes, and then use the javah tool to generate
the native JNI header with native function prototypes. These can be cut and
pasted into the C++ file for implementation.

The Java functions which are backed by the corresponding native functions
are declared in a usual way, adding a native qualifier. We also want to demon-
strate how we could do the callbacks, i.e. calling the Java code from native
code. That leads to the following high-level view of our interface class:

2 〈JNIExampleInterface.java 2〉≡
package org.wooyd.android.JNIExample;

import android.os.Handler;

import android.os.Bundle;

import android.os.Message;

import org.wooyd.android.JNIExample.Data;

public class JNIExampleInterface {

static Handler h;

〈Example constructors 3a〉
〈Example native functions 3b〉
〈Example callback 3c〉

}

This code is written to file JNIExampleInterface.java.

http://www.koushikdutta.com/2009/01/jni-in-android-and-foreword-of-why-jni.html
http://neillife.blogspot.com/2009/01/how-to-add-new-module-to-android.html

April 25, 2009 JNIExample.nw 3

One valid question about this definition is why we need a Handler class at-
tribute. It turns out that it will come in handy in situations, when the native
library wants to pass some information to the Java process through a callback.
If the callback will be called by a native thread (for extended discussion see
”Calling Java functions” section 4.2), and then will try to modify the applica-
tion’s user interface (UI) in any way, an exception will be thrown, as Android
only allows the thread which created the UI (the UI thread) to modify it. To
overcome this problem we are going to use the message-passing interface pro-
vided by Handler to dispatch the data received by a callback to the UI thread,
and allow it to do the UI modifications. In order for this to work, we are going
to accept a Handler instance as an argument for non-trivial constructor (rea-
sons for keeping trivial one will become apparent later), and save it in a class
attribute, and that’s pretty much the only task for the constructor:

3a 〈Example constructors 3a〉≡ (2)

public JNIExampleInterface() {}

public JNIExampleInterface(Handler h) {

this.h = h;

}

To illustrate various argument-passing techniques, we define three native
functions:

• callVoid(): takes no arguments and returns nothing;

• getNewData(): takes two arguments and constructs a new class instance
using them;

• getDataString(): extracts a value from an object, which is passed as an
argument.

3b 〈Example native functions 3b〉≡ (2)

public static native void callVoid();

public static native Data getNewData(int i, String s);

public static native String getDataString(Data d);

The callback will receive a string as an argument, and dispatch it to the
Handler instance recorded in the constructor, after wrapping it in a Bundle:

3c 〈Example callback 3c〉≡ (2)

public static void callBack(String s) {

Bundle b = new Bundle();

b.putString("callback_string", s);

Message m = Message.obtain();

m.setData(b);

m.setTarget(h);

m.sendToTarget();

}

April 25, 2009 JNIExample.nw 4

We also need a definition of a dummy Data class, used purely for illustrative
purposes:

4a 〈Data.java 4a〉≡
package org.wooyd.android.JNIExample;

public class Data {

public int i;

public String s;

public Data() {}

public Data(int i, String s) {

this.i = i;

this.s = s;

}

}

This code is written to file Data.java.

After the source files Data.java and JNIExampleInterface.java are com-
piled, we can generate the JNI header file, containing the prototypes of the
native functions, corresponding to their Java counterparts:

$ javac -classpath /path/to/sdk/android.jar \
org/wooyd/android/JNIExample/*.java

$ javah -classpath . org.wooyd.android.JNIExample.JNIExampleInterface

4 Native library implementation

At a high level, the Java library (consisting, in this case, of a single source file
JNIExample.cpp) will look like that:

4b 〈JNIExample.cpp 4b〉≡
〈JNI includes 5a〉
〈Miscellaneous includes 5b〉
〈Global variables 5c〉
#ifdef __cplusplus

extern "C" {

#endif

〈callVoid implementation 6〉
〈getNewData implementation 9b〉
〈getDataString implementation 10〉
〈initClassHelper implementation 12a〉
〈JNIOnLoad implementation 11〉
#ifdef __cplusplus

}

#endif

This code is written to file JNIExample.cpp.

April 25, 2009 JNIExample.nw 5

4.1 Headers and global variables

The following includes define the functions provided by Android’s version of
JNI, as well as some useful helpers:

5a 〈JNI includes 5a〉≡ (4b)

#include <jni.h>

#include <JNIHelp.h>

#include <android_runtime/AndroidRuntime.h>

Various other things which will come in handy:

5b 〈Miscellaneous includes 5b〉≡ (4b)

#include <string.h>

#include <unistd.h>

#include <pthread.h>

It is useful to have some global variables to cache things which we know will
not change during the lifetime of our program, and can be safely used across
multiple threads. One of such things is the JVM handle. We can retrieve it every
time it’s needed (for example, using android::AndroidRuntime::getJavaVM()
function), but as it does not change, it’s better to cache it.

We can also use global variables to cache the references to required classes.
As described below, it is not always easy to do class resolution in native code,
especially when it is done from native threads (see ”Calling Java functions”
section 4.2 for details). Here we are just providing the global variables to hold
instances of Data and JNIExampleInterface class objects, as well as defining
some constant strings which will come in handy:

5c 〈Global variables 5c〉≡ (4b)

static JavaVM *gJavaVM;

static jobject gInterfaceObject, gDataObject;

const char *kInterfacePath = "org/wooyd/android/JNIExample/JNIExampleInterface";

const char *kDataPath = "org/wooyd/android/JNIExample/Data";

April 25, 2009 JNIExample.nw 6

4.2 Calling Java functions from Java and native threads

The callVoid() function is the simplest one, as it does not take any arguments,
and returns nothing. We will use it to illustrate how the data can be passed
back to Java through the callback mechanism, by calling the Java callBack()
function.

At this point it is important to recognize that there are two distinct possibili-
ties here: the Java function may be called either from a thread which originated
in Java or from a native thread, which has been started in the native code,
and of which JVM has no knowledge of. In the former case the call may be
performed directly, in the latter we must first attach the native thread to the
JVM. That requires an additional layer, a native callback handler, which will do
the right thing in either case. We will also need a function to create the native
thread, so structurally the implementation will look like this:

6 〈callVoid implementation 6〉≡ (4b)

〈Callback handler 7〉
〈Thread start function 8〉
〈callVoid function 9a〉

April 25, 2009 JNIExample.nw 7

Native callback handler gets the JNI environment (attaching the native
thread if necessary), uses a cached reference to the gInterfaceObject to get to
JNIExampleInterface class, obtains callBack() method reference, and calls
it:

7 〈Callback handler 7〉≡ (6)

static void callback_handler(char *s) {

int status;

JNIEnv *env;

bool isAttached = false;

status = gJavaVM->GetEnv((void **) &env, JNI_VERSION_1_4);

if(status < 0) {

LOGE("callback_handler: failed to get JNI environment, "

"assuming native thread");

status = gJavaVM->AttachCurrentThread(&env, NULL);

if(status < 0) {

LOGE("callback_handler: failed to attach "

"current thread");

return;

}

isAttached = true;

}

/* Construct a Java string */

jstring js = env->NewStringUTF(s);

jclass interfaceClass = env->GetObjectClass(gInterfaceObject);

if(!interfaceClass) {

LOGE("callback_handler: failed to get class reference");

if(isAttached) gJavaVM->DetachCurrentThread();

return;

}

/* Find the callBack method ID */

jmethodID method = env->GetStaticMethodID(

interfaceClass, "callBack", "(Ljava/lang/String;)V");

if(!method) {

LOGE("callback_handler: failed to get method ID");

if(isAttached) gJavaVM->DetachCurrentThread();

return;

}

env->CallStaticVoidMethod(interfaceClass, method, js);

if(isAttached) gJavaVM->DetachCurrentThread();

}

April 25, 2009 JNIExample.nw 8

A few comments are in order:

• The JNI environment, returned by the JNI GetEnv() function is unique
for each thread, so must be retrieved every time we enter the function.
The JavaVM pointer, on the other hand, is per-program, so can be cached
(you will see it done in the JNI OnLoad() function), and safely used across
threads.

• When we attach a native thread, the associated Java environment comes
with a bootstrap class loader. That means that even if we would try to
get a class reference in the function (the normal way to do it would be to
use FindClass() JNI function), it would trigger an exception. Because of
that we use a cached copy of JNIExampleInterface object to get a class
reference (amusingly, we cannot cache the reference to the class itself, as
any attempt to use it triggers an exception from JVM, who thinks that
such reference should not be visible to native code). This caching is also
done in JNI OnLoad(), which might be the only function called by Android
Java implementation with a functional class loader.

• In order to retrieve the method ID of the callBack() method, we need
to specify its name and JNI signature. In this case the signature indicates
that the function takes a java.lang.String object as an argument, and
returns nothing (i.e. has return type void). Consult JNI documentation
for more information on function signatures, one useful tip is that you can
use javap utility to look up the function signatures of non-native func-
tions (for native functions the signature information is already included
as comments into the header, generated by javah).

• Someone more paranoid than me could use locking to avoid race conditions
associated with setting and checking of the isAttached variable.

In order to test calling from native threads, we will also need a function which
is started in a separate thread. Its only role is to call the callback handler:

8 〈Thread start function 8〉≡ (6)

void *native_thread_start(void *arg) {

sleep(1);

callback_handler((char *) "Called from native thread");

}

April 25, 2009 JNIExample.nw 9

We now have all necessary pieces to implement the native counterpart of the
callVoid() function:

9a 〈callVoid function 9a〉≡ (6)

/*

* Class: org_wooyd_android_JNIExample_JNIExampleInterface

* Method: callVoid

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_org_wooyd_android_JNIExample_JNIExampleInterface_callVoid

(JNIEnv *env, jclass cls) {

pthread_t native_thread;

callback_handler((char *) "Called from Java thread");

if(pthread_create(&native_thread, NULL, native_thread_start, NULL)) {

LOGE("callVoid: failed to create a native thread");

}

}

4.3 Implementation of other native functions

The getNewData() function illustrates creation of a new Java object in the
native library, which is then returned to the caller. Again, we use a cached
Data object reference in order to obtain the class and create a new instance.

9b 〈getNewData implementation 9b〉≡ (4b)

/*

* Class: org_wooyd_android_JNIExample_JNIExampleInterface

* Method: getNewData

* Signature: (ILjava/lang/String;)Lorg/wooyd/android/JNIExample/Data;

*/

JNIEXPORT jobject JNICALL Java_org_wooyd_android_JNIExample_JNIExampleInterface_getNewData

(JNIEnv *env, jclass cls, jint i, jstring s) {

jclass dataClass = env->GetObjectClass(gDataObject);

if(!dataClass) {

LOGE("getNewData: failed to get class reference");

return NULL;

}

jmethodID dataConstructor = env->GetMethodID(

dataClass, "<init>", "(ILjava/lang/String;)V");

if(!dataConstructor) {

LOGE("getNewData: failed to get method ID");

return NULL;

}

jobject dataObject = env->NewObject(dataClass, dataConstructor, i, s);

if(!dataObject) {

LOGE("getNewData: failed to create an object");

return NULL;

}

return dataObject;

}

April 25, 2009 JNIExample.nw 10

The getDataString() function illustrates how a value stored in an object’s
attribute can be retrieved in a native function.

10 〈getDataString implementation 10〉≡ (4b)

/*

* Class: org_wooyd_android_JNIExample_JNIExampleInterface

* Method: getDataString

* Signature: (Lorg/wooyd/android/JNIExample/Data;)Ljava/lang/String;

*/

JNIEXPORT jstring JNICALL Java_org_wooyd_android_JNIExample_JNIExampleInterface_getDataString

(JNIEnv *env, jclass cls, jobject dataObject) {

jclass dataClass = env->GetObjectClass(gDataObject);

if(!dataClass) {

LOGE("getDataString: failed to get class reference");

return NULL;

}

jfieldID dataStringField = env->GetFieldID(

dataClass, "s", "Ljava/lang/String;");

if(!dataStringField) {

LOGE("getDataString: failed to get field ID");

return NULL;

}

jstring dataStringValue = (jstring) env->GetObjectField(

dataObject, dataStringField);

return dataStringValue;

}

April 25, 2009 JNIExample.nw 11

4.4 The JNI OnLoad() function implementation

The JNI OnLoad() function must be provided by the native library in order for
the JNI to work with Android JVM. It will be called immediately after the native
library is loaded into the JVM. We already mentioned a couple of tasks which
should be performed in this function: caching of the global JavaVM pointer and
caching of the object instances to enable us to call into Java. In addition, any
native methods which we want to call from Java must be registered, otherwise
Android JVM will not be able to resolve them. The overall structure of the
function thus can be written down as follows:

11 〈JNIOnLoad implementation 11〉≡ (4b)

jint JNI_OnLoad(JavaVM* vm, void* reserved)

{

JNIEnv *env;

gJavaVM = vm;

LOGI("JNI_OnLoad called");

if (vm->GetEnv((void**) &env, JNI_VERSION_1_4) != JNI_OK) {

LOGE("Failed to get the environment using GetEnv()");

return -1;

}

〈Class instance caching 12b〉
〈Native function registration 13〉
return JNI_VERSION_1_4;

}

April 25, 2009 JNIExample.nw 12

We need some way to cache a reference to a class, because native threads do
not have access to a functional classloader. As explained above, we can’t cache
the class references themselves, as it makes JVM unhappy. Instead we cache
instances of these classes, so that we can later retrieve class references using
GetObjectClass() JNI function. One thing to remember is that these objects
must be protected from garbage-collecting using NewGlobalRef(), as that guar-
antees that they will remain available to different threads during JVM lifetime.
Creating the instances and storing them in the global variables is the job for
the initClassHelper() function:

12a 〈initClassHelper implementation 12a〉≡ (4b)

void initClassHelper(JNIEnv *env, const char *path, jobject *objptr) {

jclass cls = env->FindClass(path);

if(!cls) {

LOGE("initClassHelper: failed to get %s class reference", path);

return;

}

jmethodID constr = env->GetMethodID(cls, "<init>", "()V");

if(!constr) {

LOGE("initClassHelper: failed to get %s constructor", path);

return;

}

jobject obj = env->NewObject(cls, constr);

if(!obj) {

LOGE("initClassHelper: failed to create a %s object", path);

return;

}

(*objptr) = env->NewGlobalRef(obj);

}

With this function defined, class instance caching is trivial:

12b 〈Class instance caching 12b〉≡ (11)

initClassHelper(env, kInterfacePath, &gInterfaceObject);

initClassHelper(env, kDataPath, &gDataObject);

April 25, 2009 JNIExample.nw 13

In order to register the native functions, we create an array of JNINativeMethod
structures, which contain function names, signatures (they can be simply copied
from the comments, generated by javah), and pointers to the implementing
functions. This array is then passed to Android’s registerNativeMethods()
function:

13 〈Native function registration 13〉≡ (11)

JNINativeMethod methods[] = {

{

"callVoid",

"()V",

(void *) Java_org_wooyd_android_JNIExample_JNIExampleInterface_callVoid

},

{

"getNewData",

"(ILjava/lang/String;)Lorg/wooyd/android/JNIExample/Data;",

(void *) Java_org_wooyd_android_JNIExample_JNIExampleInterface_getNewData

},

{

"getDataString",

"(Lorg/wooyd/android/JNIExample/Data;)Ljava/lang/String;",

(void *) Java_org_wooyd_android_JNIExample_JNIExampleInterface_getDataString

}

};

if(android::AndroidRuntime::registerNativeMethods(

env, kInterfacePath, methods, NELEM(methods)) != JNI_OK) {

LOGE("Failed to register native methods");

return -1;

}

April 25, 2009 JNIExample.nw 14

5 Building the native library

In order to build the native library, you need to include Android’s native headers
and link against native libraries. The only way I know to get those is to check
out and build the entire Android source code, and then build it. Procedure is
described in detail at Android Get Source page. Make sure that you use the
branch tag matching your SDK version, for example code in the release-1.0
branch matches Android 1.1 SDK.

For an example of CXXFLAGS and LDFLAGS you need to use to create a shared
library with Android toolchain, check out the Makefile, included in the example
project tarball. They are derived from build/core/combo/linux-arm.mk in
Android source.

You will probably want to build the entire example project, so you will need
a copy of the SDK as well. This code has been tested to build with Android’s
1.1 SDK and run on the currently released version of the phone. Once you
downloaded the SDK and the example tarball and unpacked them, you can
build the project using the command

ANDROID_DIR=/path/to/android/source SDK_DIR=/path/to/sdk make

6 Using native functions in Java code

We will now create a simple activity, taking advantage of the JNI functions.
One non-trivial task we will have to do in onCreate() method of the activity
is to load the native JNI library, to make the functions defined there accessible
to Java. Overall structure:

14 〈JNIExample.java 14〉≡
package org.wooyd.android.JNIExample;

〈Imports 15a〉
public class JNIExample extends Activity

{

TextView callVoidText, getNewDataText, getDataStringText;

Button callVoidButton, getNewDataButton, getDataStringButton;

Handler callbackHandler;

JNIExampleInterface jniInterface;

@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

〈Load JNI library 16a〉
〈callVoid demo 16b〉
〈getNewData demo 17b〉
〈getDataString demo 17c〉

}

}

http://source.android.com/download
http://android.wooyd.org/JNIExample/files/JNIExample.tar.gz
http://android.wooyd.org/JNIExample/files/JNIExample.tar.gz

April 25, 2009 JNIExample.nw 15

This code is written to file JNIExample.java.

Imports needed to draw the UI and display it to the user:
15a 〈Imports 15a〉≡ (14) 15b .

import android.app.Activity;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

Imports needed to enable communication between the Java callback and the UI
thread:

15b 〈Imports 15a〉+≡ (14) / 15a 15c .

import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

Imports for manipulation with the native library:
15c 〈Imports 15a〉+≡ (14) / 15b 15d .

import java.util.zip.*;

import java.io.InputStream;

import java.io.OutputStream;

import java.io.FileOutputStream;

import java.io.File;

We will also need access to our JNI interface class and toy Data class:
15d 〈Imports 15a〉+≡ (14) / 15c 15e .

import org.wooyd.android.JNIExample.JNIExampleInterface;

import org.wooyd.android.JNIExample.Data;

Logging utilities will also come in handy:
15e 〈Imports 15a〉+≡ (14) / 15d

import android.util.Log;

April 25, 2009 JNIExample.nw 16

At this time the only officialy supported way to create an Android application
is by using the Java API. That means, that no facilities are provided to easily
build and package shared libraries, and automatically load them on application
startup. One possible way to include the library into the application package
(file with extension .apk) is to place it into the assets subdirectory of the
Android project, created with activitycreator. During the package build it
will be automatically included into the APK package, however we still will have
to load it by hand when our application starts up. Luckily, the location where
APK is installed is known, and APK is simply a ZIP archive, so we can extract
the library file from Java and copy it into the application directory, allowing us
to load it:

16a 〈Load JNI library 16a〉≡ (14)

try {

String cls = "org.wooyd.android.JNIExample";

String lib = "libjniexample.so";

String apkLocation = "/data/app/" + cls + ".apk";

String libLocation = "/data/data/" + cls + "/" + lib;

ZipFile zip = new ZipFile(apkLocation);

ZipEntry zipen = zip.getEntry("assets/" + lib);

InputStream is = zip.getInputStream(zipen);

OutputStream os = new FileOutputStream(libLocation);

byte[] buf = new byte[8092];

int n;

while ((n = is.read(buf)) > 0) os.write(buf, 0, n);

os.close();

is.close();

System.load(libLocation);

} catch (Exception ex) {

Log.e("JNIExample", "failed to install native library: " + ex);

}

The rest simply demonstrates the functionality, provided by the native library,
by calling the native functions and displaying the results. For the callVoid()
demo we need to initialize a handler first, and pass it to the JNI interface class,
to enable us to receive callback messages:

16b 〈callVoid demo 16b〉≡ (14) 17a .

callVoidText = (TextView) findViewById(R.id.callVoid_text);

callbackHandler = new Handler() {

public void handleMessage(Message msg) {

Bundle b = msg.getData();

callVoidText.setText(b.getString("callback_string"));

}

};

jniInterface = new JNIExampleInterface(callbackHandler);

April 25, 2009 JNIExample.nw 17

We also set up a button which will call callVoid() from the native library
when pressed:

17a 〈callVoid demo 16b〉+≡ (14) / 16b

callVoidButton = (Button) findViewById(R.id.callVoid_button);

callVoidButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v) {

jniInterface.callVoid();

}

});

For getNewData() we pass the parameters to the native function and expect
to get the Data object back:

17b 〈getNewData demo 17b〉≡ (14)

getNewDataText = (TextView) findViewById(R.id.getNewData_text);

getNewDataButton = (Button) findViewById(R.id.getNewData_button);

getNewDataButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v) {

Data d = jniInterface.getNewData(42, "foo");

getNewDataText.setText(

"getNewData(42, \"foo\") == Data(" + d.i + ", \"" + d.s + "\")");

}

});

And pretty much the same for getDataString():

17c 〈getDataString demo 17c〉≡ (14)

getDataStringText = (TextView) findViewById(R.id.getDataString_text);

getDataStringButton = (Button) findViewById(R.id.getDataString_button);

getDataStringButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v) {

Data d = new Data(43, "bar");

String s = jniInterface.getDataString(d);

getDataStringText.setText(

"getDataString(Data(43, \"bar\")) == \"" + s + "\"");

}

});

April 25, 2009 JNIExample.nw 18

Try pushing the buttons and see whether it actually works!

7 Unresolved issues and bugs

Even though the example is fully functional, there are a couple unresolved issues
remaining, which I was not able to figure out so far. Problems appear when
you start the activity, then press the Back button to hide it, and then start it
again. In my experience, calls to native functions in such restarted activity will
fail spectacularly. callVoid() simply crashes with a segmentation fault, while
calls to getNewData() and getDataString() cause JVM to abort with an er-
ror, because it is no longer happy with the globally cached object reference. It
appears that activity restart somehow invalidates our cached object references,
even though they are protected with NewGlobalRef(), and the activity is run-
ning within the original JVM (activity restart does not mean that JVM itself
is restarted). I don’t have a good explanation on why that happens, so if you
have any ideas, please let me know.

	Licence
	Introduction
	Java interface
	Native library implementation
	Headers and global variables
	Calling Java functions from Java and native threads
	Implementation of other native functions
	The JNI_OnLoad() function implementation

	Building the native library
	Using native functions in Java code
	Unresolved issues and bugs

